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Equivalences and Implication

Capturing Entailment

We saw recently that it’s always possible (for any two PL
propositions ϕ and ψ) to put either one on either side of a
conjunction.

Another way of saying this is that any time ϕ ∧ ψ is true ψ ∧ ϕ is
also true (as our truth tables can verify).

So we can start from either ϕ ∧ ψ or ψ ∧ ϕ and prove the other.

Also, now that we have Implication Introduction (→I), we can
capture a piece of the entailment present in any given proof
(Figure 1 shows an example of this).

A ∧B ` A ∧B (∧E2)A ∧B ` B
A ∧B ` A ∧B (∧E1)A ∧B ` A (∧I)

A ∧B ` B ∧A (→I)
` (A ∧B) → (B ∧A)

Figure 1: Proof of (A ∧B) → (B ∧A).
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Equivalences and Implication

Strengthening Implication

So, as Figure 1 shows, introducing an instance of the connective →
gives us a way to say in the logic that some premise leads to some
conclusion.

But notice that we’d ideally like to make a stronger claim than
just (ϕ ∧ ψ) → (ψ ∧ ϕ).

That is, we want to be able to say not just that “starting from
ϕ ∧ ψ, you can deduce ψ ∧ ϕ”.

We’d like to have our logic be capable of deriving the fact that
ϕ ∧ ψ and ψ ∧ ϕ are equivalent statements.

Remembering that we already have a way to state equivalence in
our logic via the biimplicational connective ↔, we add more
logical rules.
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Equivalences and Implication

Introducing ↔

Inference Rule 9 (Biimplication Introduction)

Γ ` ϕ→ ψ ∆ ` ψ → ϕ
(↔I)

Γ,∆ ` ϕ↔ ψ

With Rule 9, it’s easy to see why the symbol ↔ was chosen to
represent biimplication.

It’s because a biimplication essentially says “with either side (the
antecedent) being true, you get the other side (the consequent)
being true.”

The reason biimplication is used to capture equivalence, as our
truth tables say, is that if one is true (false) then the other is also
true (false).

There are also elimination rules for ↔ that let us use equivalences
in proofs.
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Equivalences and Implication

Eliminating ↔

Inference Rule 10 (Biimplication Elimination 1)

Γ ` ϕ↔ ψ
(↔E1)Γ ` ϕ→ ψ

Inference Rule 11 (Biimplication Elimination 2)

Γ ` ϕ↔ ψ
(↔E2)Γ ` ψ → ϕ

5 / 8



Equivalences and Implication

Proof of a Well-known Equivalence

Now we can actually prove that A ∧B is equivalent to B ∧A
(Figure 2 gives this proof).

A ∧B ` A ∧B (∧E2)A ∧B ` B
A ∧B ` A ∧B (∧E1)A ∧B ` A (∧I)

A ∧B ` B ∧A (→I)
` (A ∧B) → (B ∧A)

B ∧A ` B ∧A (∧E2)B ∧A ` A
B ∧A ` B ∧A (∧E1)B ∧A ` B (∧I)

B ∧A ` A ∧B (→I)
` (B ∧A) → (A ∧B)

(↔I)
` (A ∧B) ↔ (B ∧A)

Figure 2: Proof of (A ∧B) ↔ (B ∧A).
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Equivalences and Implication

Things to Note

Notice that, in the proof given in Figure 2, there are no premises
left of the turnstile.

This means that what we’ve proved, namely that A∧B and B ∧A
are equivalent to one another, is not contingent on any other
assumptions. This is exactly what we want our logic to say about
equivalences.

One technical note: I have used A and B in the proof in Figure 2.
But a similiar proof would work for any two propositions, not just
atomic ones.
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Homework

Exercises

Problem 1

Starting with the assumptions A↔ B, (B ∧A) → C, and A, give a
sequent-style natural deduction proof of A→ C.
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