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Relations (Intuitive Idea)

• Intuitively, a relation is “the kind of thing that either holds or doesn’t
hold between certain things.”

• Examples:

– Being less than is a relation between two numbers.

– Loving is a relation between two people.

– Owning is a relation between a person and a thing.

– Being at is a relation between a thing and a location.

– Knowing that is a relation between a person and a proposition.

The Extension of a Relation (Intuitive Idea, 1/3)

• The extension of a relation is the set of ordered pairs 〈x, y〉 such that x is
in the relation with y.

• For example, the extension of the love relation is the set of ordered pairs
〈x, y〉 such that x loves y.

• In general, which pairs are in the extension of a relation is contingent,
i.e. depends on how things happen to be.

• For example, the way things actually are, Brad loves Angelina (let’s say).
But they could have been otherwise.

The Extension of a Relation (Intuitive Idea, 2/3)

• Different relations can have the same extension.

• Example: suppose it just so happened that for all pairs of people x and
y, x loves y iff x’s social security number is less than y’s social security
number.

• However, we wouldn’t then say that loving someone is the same thing as
having a lower social security number than that person.
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• More generally, in natural language semantics, it’s very important to dis-
tinguish between the sense of the word love, which is the love relation
itself, and the reference of the word love, which is the extension of that
relation.

• We postpone the question of how to model relations themselves (as op-
posed to their extensions) until we’ve introduced the semantic notion of a
proposition (roughly: what a declarative sentence expresses).

The Extension of a Relation (Intuitive Idea, 3/3)

• Mathematical relations (such as being less than) differ from relations such
as loving, owning, being at, or knowing that, in this important respect:
which ordered pairs are in the relation is not contingent.

• For example,it doesn’t just so happen that 2 < 3; rather. things couldn’t
have been otherwise.

• Another way to say this is that 2 is necessarily less than 3 (not merely
contingently less than 3).

• Since, with mathematical relations, which ordered pairs are in the relation
is a matter of necessity (and not of contingency), mathematicians don’t
bother to make a distinction between a relation and its extension.

• So the idea of relation we are about to introduce will work fine for math,
but when we start to discuss linguistic meaning, we will have to rethink
things.

Preliminary Definition: Relation

• A relation from A to B, also called a relation between A and B, is a
subset of A×B.

• A relation on A is a relation between A and A, i.e. a subset of A(2).

Note: if R is a relation, we usually write a R b as a shorthand for 〈a, b〉 ∈ R.

Some Important Relations

• For any set A, the identity relation

idA =def {〈x, y〉 ∈ A×A | x = y}

is a relation on A.

• For any set A, the subset inclusion relation
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⊆A =def {〈x, y〉 ∈ ℘(A)× ℘(A) | x ⊆ y}

and the proper subset inclusion relation

(A =def {〈x, y〉 ∈ ℘(A)× ℘(A) | x ( y}

are relations on ℘(A).

• The less than relation

< =def {〈m, n〉 ∈ ω × ω | m ( n}

is a relation on ω.

Definition: Inverse of a Relation

• If R is a relation from A to B, the inverse of R is the relation from B to
A defined as follows:

R−1 =def {〈x, y〉 ∈ B ×A | y R x}

• Examples:

– <−1= >

– ⊆−1
A = ⊇A

– id−1
A = idA

– For any relation R, (R−1)−1 = R.

Definition: Composition of Relations

• Suppose R is a relation from A to B and S is a relation from B to C.
Then the composition of S and R is the relation from A to C defined by

S ◦R =def {〈x, z〉 ∈ A× C | ∃y ∈ B(x R y ∧ y S z)}

• Obvious fact: If R is a relation from A to B, then

idB ◦R = R = R ◦ idA
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Definitions: Domain and Range of a Relation
Suppose R is a relation from A to B. Then:

• the domain of R is:

dom(R) =def {x ∈ A | ∃y ∈ B(x R y)}

• the range of R is:

ran(R) =def {y ∈ B | ∃x ∈ A(x R y)}

Definition: Relations of any Arity

• We defined a relation to be a subset of a cartesian product A× B. More
precisely. this is a binary relation.

• We define a ternary relation among the sets A, B, and C to be a subset
of the threefold cartesian product A×B ×C; thus a ternary relation is a
set of ordered triples.

• For n > 3, n-fold cartesian products and n-ary relations are defined in the
obvious way.

• For any n ∈ ω, we define an n-ary relation on A to be a subset of A(n).

• So a unary relation on A is a subset of A(1) = A.

• And a nullary relation on A is a subset of A(0) = 1, i.e. either 0 or 1.

Definitions: Comparability and Connexity
Suppose R is a binary relation on A.

• Distinct a, b ∈ A are called (R-)comparable if either a R b or b R a;
otherwise, they are called incomparable.

• R is called connex iff a and b are comparable for all distinct a, b ∈ A.

• Exercise: Are any of the relations we’ve already introduced connex?

Definitions: Reflexivity and Irreflexivity
Suppose R is a binary relation on A.

• R is called reflexive if a R a for all a ∈ A (i.e. idA ⊆ R).

• R is called irreflexive if a 6R a for all a ∈ A (i.e. idA ∩R = ∅).

• Exercise: Are any of the relations we’ve already introduced reflexive?
Irreflexive?
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Definitions: Reflexive Closure and Irreflexive Interior
Suppose R is a binary relation on A.

• The reflexive closure of R is the relation R ∪ idA.

• The irreflexive interior of R is the relation R \ idA

More Exercises

• Prove: a relation is reflexive iff it is equal to its reflexive closure, and
irreflexive iff it is equal to its irreflexive interior.

• Prove: the reflexive closure of R is the intersection of the set of reflexive
relations on A which have R as a subset.

• Prove: The irreflexive interior of R is the union of the set of irreflexive
relations which are subsets of R.

• What are the reflexive closure and the irreflexive interior of idA? Of ⊆A?
Of <?

Definition: Symmetry, Asymmetry, and Antisymmetry
Suppose R is a binary relation on A.

• R is called symmetric if a R b implies b R a for all a, b ∈ A (i.e. R = R−1).

• R is called asymmetric if a R b implies b 6R a for all a, b ∈ A (i.e. R ∩
R−1 = ∅).

• R is called antisymmetric if a R b and b R a imply a = b for all a, b ∈ A
(i.e. R ∩R−1 ⊆ idA).

More Exercises

• Which relations that we’ve discussed so far are symmetric? Asymmetric?
Antisymmetric?

• Prove that a relation is asymmetric iff it is both antisymmetric and ir-
reflexive.

Definitions: Transitivity and Intransitivity
Suppose R is a binary relation on A.

• R is called transitive if a R b and b R c imply a R c for all a, b, c ∈ A
(i.e. R ◦R ⊆ R).

• R is called intransitive if a R b and b R c imply a 6R c for all a, b, c ∈ A
(i.e. (R ◦R) ∩R = ∅).
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Note: these concepts have nothing to do with the syntactic notions of tran-
sitive and intransitive verbs!

Exercise: Which relations that we’ve discussed so far are transitive? Intran-
sitive?

Definition: Equivalence Relation
Suppose R is a binary relation on A.

• R is called an equivalence relation iff it is reflexive, transtive, and sym-
metric.

• If R is an equivalence relation, then for each a ∈ A the (R-)equivalence
class of a is

[a]R =def {b ∈ A | a R b}

Usually the subscript is dropped when it is clear from context which equiv-
alence relation is in question.

• The members of an equivalence class are called its representatives.

• If R is an equivalence relation, the set of equivalence classes, written A/R,
is called the quotient of A by R.

More Exercises

• Which relations that we’ve discussed so far are equivalence relations?

• What are their equivalence classes?

• Prove that if R is an equivalence relation on A, then A/R is a partition
of A, i.e. it is (i) pairwise disjoint, and (2) its union is A.

(Pre-)Orders and Induced Equivalence

• A preorder on a set A is a binary relation v (‘less than or equivalent to’)
on A which is reflexive and transitive.

• An antisymmetric preorder is called an order.

• The equivalence relation ≡ induced by the preorder is defined by a ≡ b
iff a v b and b v a.

• If v is an order, then ≡ is just the identity relation on A, and correspond-
ingly v is read as ‘less than or equal to’.
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Important Examples of (Pre-)Orders

• Two important orders in set theory:

– For any set A, ⊆A is an order on ℘(A).

– ≤ is an order on ω.

• The most important relation in linguistic semantics is the the entailment
preorder on propositions.

Before discussing entailment, we have to introduce the things that it re-
lates: propositions.

An Intuitive Introduction to Propositions (1/3)

• Earlier we noted that linguistic semanticists in general (following Frege
(1892)) distinguish between the sense of (an utterance of) a linguistic
expression and its reference.

• An expression’s sense is independent of how things are.

(Remember our example: the sense of the verb love is the love relation,
whatever that is.)

• Whereas the reference of an expression is the extension of its sense, which
in general depends on how things are.

(Remember our example: the reference of the verb love is the set of ordered
pairs 〈x, y〉 such that x loves y.)

• The things that can be the senses of declarative sentences are usually
called propositions.

• What’s the extension of a proposition? We’ll return to that.

• What are propositions?

An Intuitive Introduction to Propositions (2/3)

• Something similar to the notion of proposition used here was first sug-
gested by the mathematician/philosopher Bernard Bolzano (Wissenschaftlehre,
1837)—his term was Satz an sich ‘proposition in itself’.

• They are expressed by declarative sentences.

• They are the ‘primary bearers of truth and falsity’. (A sentence is only
secondarily, or derivatively, true or false, depending on what proposition
it expresses.)
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• They are the the ‘objects of the attitudes’, i.e. they are the things that
are known, believed, doubted, etc.

• They are not linguistic.

• They are not mental.

• They are outside space, time, and causality.

An Intuitive Introduction to Propositions (3/3)

• What proposition a sentence expresses depends on the context in which it
is uttered.

• For now we have to postpone consideration of what contexts are and how
to model them.

• Sentences in different languages, or different sentences in the same lan-
guage, can express the same proposition.

• Whether a proposition is true or false in general depends on how things
are (or, in other words, the way things are).

An Intuitive Introduction to Worlds (1/2)

• A (possible) world is a way things might be.

• Here we mean not just a snapshot at a particular time, but a whole history,
stretching as far back and as far forward as things go.

• One of the worlds, called the actual world, or just actuality, is the way
things really are (again, stretching as far back and as far forward as things
go).

An Intuitive Introduction to Worlds (2/2)
There have been two main schools of thought about what worlds are and

how they relate to propositions:

• the view (apparently first advocated by Wittgenstein (1921) and C.I. Lewis
(1923) that worlds are certain sets of propositions, called maximal consis-
tent sets.

• the view expressed by Carnap (1947) and Kripke (1963) that propositions
are sets of possible worlds.

– In Carnap’s version, worlds are complete state descriptions, which
are sets of sentences in some logical language.

– Whereas in Kripke’s version, worlds are theoretical primitives and so
not subject to further analysis.
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The Wittgenstein/Lewis Take on Worlds and Propositions

• The Wittgenstein/Lewis view (worlds are maximal consistent sets of propo-
sitions) fits naturally with the semantics for modal logic (largely based on
mathematics invented by Marshall Stone in the 1930s) developed by Tarski
and his collaborators in the 1940s-early 1950s.

• This view has been advocated by numerous philosphers, such as Robert
Adams, Alvin Plantinga, William Lycan, and Peter Forrest.

• But scarcely any linguistic semanticists seem to be familiar with this view.

• We’ll try to correct that imbalance.

The Carnap/Kripke Take on Worlds and Propositions

• Carnap’s (1947) idea that propositions are sets of worlds is still the main-
stream view among linguistic semanticists.

• However, his idea that worlds themselves are sets of sentences in a logical
language (‘complete state descriptions’) was discarded in favor of Kripke’s
(1963) treatment of worlds as theoretical primitives.

• Kripke’s view was subsequently advocated by certain philosophers—David
Lewis, Robert Stalnaker, Richard Montague, and David Kaplan—who
exerted a powerful influence on linguistic semanticists, such as Barbara
Partee and David Dowty.

• But among philosophers, nowadays it seems that Stalnaker is the only one
still defending this view.

• Soon we’ll see why.

First Steps in Theoretical Foundations of Semantics

• We assume there is a set P of things we call propositions.

• We assume there is a set W of things we call worlds.

• We assume that there is a distinguished world w ∈ W called the actual
world.

• We assume there is a relation @, called holding, between propositions
and worlds.

• If p@w, we say p holds at w, or is true at w, or is a fact of w; otherwise,
we say p is false at w.

• The theory unfolds differently depending on whether we develop it in
accordance with the Wittgenstein/Lewis view or the Kripke view.

• We will consider both.
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Kinds of Propositions
A proposition p is called:

• a necessary truth, or a necessity, iff p@w for every world w

• a truth iff p@w

• a falsehood iff ¬(p@w)

• a necessary falsehood, or an impossibility, iff p@w for no world w

• a possibility iff p@w for some world w

• contingent iff it is neither a necessary truth nor a necessary falsehood.

Intuitive Introduction to Entailment

• Most semanticists assume that there is a binary relation (in the mathe-
matical sense) between propositions, called entailment.

• The basic intuition about entailment is that for two propositions p and q,
p entails q just in case, no matter how things are, if p is true with things
that way, then so is q.

• If sentence S1 expresses p and sentence S2 expresses q, then we also say
S1 entails S2, or that S2 follows from S1, if p entails q.

• p and q (or S1 and S2) are called (truth-conditionally) equivalent iff
they entail each other.

Formalizing Entailment

• We define the (binary) entails relation on propositions as follows: for all
p, q ∈ P, p entails q iff for every w ∈W, if p@w then q@w.

• It’s easy to see that entails is a preorder.

• We say p and q are (truth-conditionally) equivalent iff p ≡ q, where
≡ is the equivalence relation induced by entailment.

• So p and q are equivalent iff they are true at the same worlds.

Formalizing Entailment à la Kripke (1/2)

• To formalize the Kripke view of worlds and propositions, we first assume
that propositions are the same thing as sets of worlds, i.e.

P =def ℘(W )
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• Next, we define the holding relation between propositions and worlds as
follows:

@ =def {〈p, w〉 ∈ P×W | w ∈ p}

• From this it follows from the definition of entailment (previous slide) that
entailment is just the inclusion relation on sets of worlds:

entails = ⊆W

Formalizing Entailment à la Kripke (2/2)

• An outstanding virtue of the Kripke view is how breathtakingly easy it is
to model mathematically.

• Could the overwhelming popularity of this approach among linguistic se-
manticists have anything to do with this?

• Unfortunately, on the Kripke view, entailment is not just a preorder, but
a order, i.e. it is not just reflexive and transitive but also antisymmetric.
So if two propositions are equivalent, they are the same proposition.

• And so, if two sentences entail each other, they must have the same sense,
a consequence that philosophers (Stalnaker excluded) generally find un-
acceptable.

• Linguists are aware of the problem, but for the most part stick with the
Kripke view anyway. (Be prepared for this if you are planning to take
Semantics next quarter.)

Formalizing Entailment à la Wittgenstein/Lewis

• To formalize the Wittgenstein/Lewis view of worlds and propositions, we
first assume that worlds are certain sets of propositions, i.e.:

W ( ℘(P)

• More specifically, we take worlds to be maximal consistent sets of propo-
sitions. Intuitively speaking, this means that:

– a world has enough propositions to ‘settle all questions’, and

– a world doesn’t have any impossiblities (necessarily false proposi-
tions)

• But before we can say exactly what we mean by a maximal consistent set,
we need to put a little more mathematical machinery in place.
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More Definitions for Preorders

• Background assumptions:

– v is a preorder on A

– ≡ is the induced equivalence relation

– S ⊆ A

– a ∈ A (not necessarily ∈ S)

• We call a an upper (lower) bound of S iff, for every b ∈ S, b v a (a v b).

• Suppose moreover that a ∈ S. Then a is said to be:

– greatest (least) in S iff it is an upper (lower) bound of S

– a top (bottom) iff it is greatest (least) in A

– maximal (minimal) in S iff, for every b ∈ S, if a v b (b v a), then
a ≡ b.

Note: the definition of greatest/least above is equivalent to the one in Chap-
ter 3.

Some Observations

• Background assumptions:

– v is a preorder on A

– ≡ is the induced equivalence relation

– S ⊆ A

• If S has any greatest (least) elements, then they are the only maximal
(minimal) elements of S.

• All greatest (least) members of S are equivalent.

• And so all tops (bottoms) of A are equivalent.

• And so if v is an order, S has at most one greatest (least) member, and
A has at most one top (bottom).

• Maximal (minimal) elements needn’t be greatest (least).
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(Pre-)Chains

• A connex (pre-)order is called a (pre-)chain.

• Chains are also called total orders, or linear orders.

• In a (pre-)chain, being maximal (minimal) in S is the same thing as being
greatest (least) in S.

• A chain is called well-ordered iff every nonempty subset has a least
element.

• It is possible to prove based on the set-theoretic assumptions we have
alreay made that ω is well-ordered by the usual (≤) order.

LUBs and GLBs

• Background assumptions:

– v is a preorder on A

– S ⊆ A

• Let UB(S) (LB(S)) be the set of upper (lower) bounds of S.

– A least member of UB(S) is called a least upper bound (lub) of
S.

– A greatest member of LB(S) is called a greatest lower bound
(glb) of S.

More about LUBs and GLBs

• Background assumptions:

– v is a preorder on A

– S ⊆ A

• Any greatest (least) member of S is a lub (glb) of S.

• All lubs (glbs) of S are equivalent.

• If v is an order, then S has at most one lub (glb).

• A lub (glb) of A is the same thing as a top (bottom).

• A lub (glb) of ∅ is the same thing as a bottom (top).
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