
Introduction to Formal Languages

Carl Pollard

October 27, 2011

Review of Basic Concepts

• The members of An are called A-strings of length n.

• For any n ∈ ω, there’s a bijection from An to A(n) mapping each A-string
of length n to an n-tuple of elements of A.

• A∗ =def

⋃
i∈ω Ai is the set of all A-strings.

• For nonempty finite A:

– A∗ is countably infinite

– The set ℘(A∗) of A-languages (i.e. sets of A-strings) is nondenu-
merable (in fact, equinumerous with ℘(ω)).

The Monoid of A-Strings

• For any set A, A∗ forms a monoid with

– _ (concatenation) as the associative operation

– εA (the null A-string) as the identity for _.

• Here if f ∈ Am and g ∈ An, f _ g ∈ Am+n is given by

– (f _ g)(i) = f(i) for all i < m; and

– (f _ g)(m+ i) = g(i) for all i < n.

Note 1: Usually concatenation is expressed without the “_”, by mere jux-
taposition; e.g. fg for f _ g.

Note 2: Because concatenation is an associative operation, we can write
simply fgh instead of f(gh) or (fg)h.

1

The Ordered Monoid of A-Languages

For any set A, ℘(A∗) forms an ordered monoid with

• A-languages (i.e. sets of A-strings) as the elements

• subset inclusion as the order

• language concatenation, written •, as the binary operation, where for
any A-languages L and M , L•M is the set of all strings of the form u _ v
where u ∈ L and v ∈M

• 1A = {εA} as the identity for •.

One Way to Define a Language Recursively

1. Start with:

a. a set L0 of A-strings (the ‘lexicon’) which you know you want in the
language you wish to define, and

b. a unary operation R (the ‘rules’) on A-languages.

2. Then define L to be
⋃

n∈ω Ln, where where for each k ∈ ω, Lk+1 = F (Lk).

3. This makes sense because of RT with X = ℘(A∗), x = L0, and F = R.

Example: the Mirror Image Language (1/2)

• Intuitively Mir(A) is the language consisting of all strings whose “second
half is the reverse of its first half”.

• Using a popular informal style of recursive definition, we ‘define’ the lan-
guage Mir(A) as follows:

1. ε ∈ Mir(A);

2. If x ∈ Mir(A) and a ∈ A, then axa ∈ Mir(A);

3. Nothing else is in Mir(A).

Example: the Mirror Image Language (2/2)

• Formally, this definition is justified by RT with

– X = ℘(A∗)

– x = 1A

– F is the function that maps any A-language S to

F (S) = {y ∈ A∗ | ∃a∃x[(a ∈ A) ∧ (x ∈ S) ∧ (y = axa)]}

2

• RT then guarantees the existence of a function h : ω → ℘(A∗) such that:

– h(0) = {ε}
– for every n ∈ ω, h(n+ 1) = F (h(n)).

• Finally, we define

Mir(A) =def

⋃
n∈ω h(n).

• Note that h(n) is the set of all mirror image strings of length 2n.

Some Teeny Languages

• For any a ∈ A, a is the singleton A-language whose only member is the
string of length one a.

• 1A is the singleton language whose only member is the null A-string ε.

• ∅ as always is just the empty set, but for any A we can also think of this
as the A-language which contains no strings!

An alternative notation for this language is 0A.

New Languages from Old (1/3)

We define some operations on ℘(A∗). In these definitions L and M range
over A-languages.

• The concatenation of L and M , written L •M , is the set of all strings
of the form u _ v where u ∈ L and v ∈M .

• The right residual of L by M , written L/M , is the set of all strings u
such that u _ v ∈ L for every v ∈M .

• The left residual of L by M , written M\L, is the set of all strings u such
that v _ u ∈ L for every v ∈M .

New Languages from Old (2/3)

The Kleene closure of L, written kl(L), has the following informal recursive
definition:

1. (base clause) ε ∈ kl(L)

2. (recursion clause) if u ∈ L and v ∈ kl(L), then uv ∈ kl(L)

3. nothing else is in kl(L).

Intuitively: the members of kl(L) are the strings formed by concatenating
zero or more strings of L.

3

New Languages from Old (3/3)
The positive Kleene closure of L, written kl+(L), has the following in-

formal recursive definition:

1. (base clause) If u ∈ L, then u ∈ kl+(L)

2. (recursion clause) if u ∈ L and v ∈ kl+(L), then uv ∈ kl+(L)

3. nothing else is in kl+(L).

Intuitively: the members of kl+(L) are the strings formed
by concatenating one or more strings of L.

The Set Reg(A) of Regular A-Languages
The following (informally) recursively defined set of languages is important

in computational linguistics applications:

1. (Base clauses)

a. For each a ∈ A, a ∈ Reg(A)

b. 0A ∈ Reg(A)

c. 1A ∈ Reg(A)

2. (Recursion clauses)

a. for each L ∈ Reg(A), kl(L) ∈ Reg(A)

b. for each L,M ∈ Reg(A), L ∪M ∈ Reg(A)

c. for each L,M ∈ Reg(A), L •M ∈ Reg(A)

3. nothing else is in Reg(A).

Context-Free Grammars (CFGs)
A CFG is an ordered quadruple 〈T,N,D, P 〉 where

• T is a finite set called the terminals;

• N is a finite set called the nonterminals

• D is a finite subset of N × T called the lexical entries;

• P is a finite subset of N×N+ called the phrase structure rules (PSRs).

CFG Notation

• ‘A→ t ’ means 〈A, t〉 ∈ D.

• ‘A→ A0 . . . An−1’ means 〈A,A0 . . . An−1〉 ∈ P .

• ‘A→ {s0, . . . sn−1}’ abbreviates A→ si (i < n).

4

A ‘Toy’ CFG for English (1/2)

T = {Fido, Felix, Mary, barked, bit, gave, believed,
heard, the, cat, dog, yesterday}

N = {S, NP, VP, TV, DTV, SV, Det, N, Adv}

D consist of the following lexical entries:

NP→ {Fido, Felix, Mary}

VP→ barked

TV→ bit

DTV→ gave

SV→ {believed, heard}

Det→ the

N→ {cat, dog}

Adv→ yesterday

A ‘Toy’ CFG for English (2/2)
P consists of the following PSRs:

S→ NP VP

VP→ {TV NP, DTV NP NP, SV S, VP Adv}

NP→ Det N

Context-Free Languages (CFLs)

• Given a CFG 〈T,N,D, P 〉, we can define a function C from N to T -
languages (we write CA for C(A)) as described below.

• The CA are called the syntactic categories of the CFG (and so a noin-
terminal can be thought of as a name of a syntactic category).

• A language is called context free if it is a syntactic category of some
CFG.

5

Historical Notes

• Up until the mid 1980’s an open research questions was whether NLs
(considered as sets of word strings) were context-free languages (CFLs).

• Chomsky maintained they were not, and his invention of transformational
grammar (TG) was motivated in large part by the perceived need to go
beyond the expressive power of CFGs.

• Gazdar and Pullum (early 1980’s) refuted all published arguments that
NLs could not be CFLs.

• Together with Klein and Sag, they developed a context-free framework,
generalized phrase structure grammar (GPSG), for syntactic theory.

• But in 1985, Shieber published a paper arguing that Swiss German cannot
be a CFL.

• Shieber’s argument is still generally accepted today.

Defining the Syntactic Categories of a CFG (1/2)

• We will recursively define a function h : ω → ℘(T ∗)N .

• Intuitively, for each nonterminal A, the sets h(n)(A) are successively larger
approximations of CA.

• Then CA is defined to be CA =def

⋃
n∈ω h(n)(A).

Defining the Syntactic Categories of a CFG (2/2)

• We define h using the Recursion Theorem (RT) with X, x, F set as follows:

– X = ℘(T ∗)N

– x is the function that maps each A ∈ N to the set of length-one
strings t such that A→ t.

– F is the function from X to X that maps a function L : N → ℘(T ∗)
to the function that maps each nonterminal A to the union of L(A)
with the set of all strings that can be obtained by applying a PSR
A → A0 . . . An−1 to strings s0, . . . , sn−1, where, for each i < n, si

belongs to L(Ai). I.e. F (L)(A) =

L(A) ∪
⋃
{L(A0) • . . . • L(An−1) | A→ A0 . . . An−1}.

– Given these values of X, x, and F , the RT guarantees the existence
of a unique function h from ω to functions from N to ℘(T ∗).

6

Proving that a String Belongs to a Category (1/2)

• With the CA formally defined as above, the following two clauses amount
to an (informal) simultaneous recursive definition of the syntactic cate-
gories:

– (Base Clause) If A→ t, then t ∈ CA.

– (Recursion Clause) If A→ A0 . . . An−1 and for each i < n, si ∈ CAi ,
then s0 . . . sn−1 ∈ CA.

• This in turn provides a simple-minded way to prove that a string belongs
to a syntactic category (if in fact it does!).

Proving that a String Belongs to a Category (2/2)

• By way of illustration, consider the string

s = Mary heard Fido bit Felix yesterday.

• We can (and will) prove that s ∈ CS.

• But most syntacticians would say that s corresponds to two different sen-
tences, one roughly paraphrasable as Mary heard yesterday that Fido bit
Felix and another roughly paraphrasable as Mary heard that yesterday,
Fido bit Felix.

• Of course, these two sentences mean different things; but more relevant
for our present purposes is that we can also characterize the difference
between the two sentences purely in terms of two distinct ways of proving
that s ∈ CS.

First Proof

• From the lexicon and the base clause, we know that Mary, Fido, Felix
∈ CNP, heard ∈ CSV, bit ∈ CTV, and yesterday ∈ CAdv.

• Then, by repeated applications of the recursion clause, it follows that:

1. since bit ∈ CTV and Felix ∈ CNP, bit Felix ∈ CVP;

2. since bit Felix ∈ CVP and yesterday ∈ CAdv, bit Felix yesterday
∈ CVP;

3. since Fido ∈ CNP and bit Felix yesterday ∈ CVP, Fido bit
Felix yesterday ∈ CS;

4. since heard ∈ CSV and Fido bit Felix yesterday ∈ CS, heard
Fido bit Felix yesterday ∈ CPVP; and finally,

5. since Mary ∈ CNP and heard Fido bit Felix yesterday ∈ CVP,
Mary heard Fido bit Felix yesterday ∈ CS.

7

Second Proof

• Same as for first proof.

• Then, by repeated applications of the recursion clause, it follows that:

1. since Fido ∈ CNP and bit Felix ∈ CVP, Fido bit Felix ∈ CS;
2. since heard ∈ CSV and Fido bit Felix ∈ CS, heard Fido bit

Felix ∈ CVP;
3. since heard Fido bit Felix ∈ CVP and yesterday ∈ CAdv, heard

Fido bit Felix yesterday ∈ CVP; and finally,
4. since Mary ∈ CNP and heard Fido bit Felix yesterday ∈ CVP,

Mary heard Fido bit Felix yesterday ∈ CS.

Proofs vs. Trees (1/4)

• The analysis of NL syntax in terms of proofs is characteristic of the family
of theoretical approaches collectively known as categorial grammar,
initiated by Lambek (1958).

• But the most widely practiced approaches (sometimes referred to as main-
stream generative grammar) analyze NL syntax in terms of trees,
which will be introduced presently.

• For now, we just note that the two proofs above would correspond in a
more ‘mainstream’ syntactic approach to the two trees represented infor-
mally by diagrams on the next two slides.

Tree corresponding to first proof (2/4)
S

VP

S

VP

Adv

yesterday

VP

NP

Felix

TV

bit

NP

Fido

SV

heard

NP

Mary

8

Tree corresponding to second proof (3/4)
S

VP

Adv

yesterday

VP

S

VP

NP

Felix

TV

bit

NP

Fido

SV

heard

NP

Mary

Proofs vs. Trees (4/4)

• Intuitively, it seems clear that there is a close relationship between the
proof-based approach and the tree-based one, but the nature of the rela-
tionship cannot be made precise till we know more about trees and about
proofs.

9

