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Abstract. We present a compositional, dynamic categorial grammar
for discourse analysis that captures the core insights of dynamic se-
mantics: indefinites do not quantify but introduce discourse referents;
definites are anaphoric to previously-mentioned discourse referents; dis-
course referents have their ‘lifespan’ limited by certain operators. The
categorial grammar formalism we propose is strongly lexicalist and de-
rives linguistic signs with a syntactic division of labor separating surface
form from the underlying combinatorics. We argue that this formalism
compares favorably with earlier efforts on several counts. It does not
require any complicated or idiosyncratic machinery such as specialized
assignments, states, or continuations, and encodes the requirement that
a certain discourse referent be present in the discourse context using de-
pendent types, rather than e.g. partial functions. The dynamic semantics
itself is a straightforward extension of an underlying static semantics that
is fully (hyper)intensional, avoiding many unsavory problems associated
with standard possible worlds approaches.

Keywords: categorial grammar, dynamic semantics, compositionality,
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1 Introduction

In dynamic semantics, the interpretation of sentences both depends upon and
acts upon the utterance context. When the classic dynamic semantic frameworks
of discourse representation theory (DRT, [15]) and file change semantics (FCS,
[13]) were first introduced, they attracted a lot of attention because they provided
analyses of phenomena (such as donkey anaphora, cross-sentential anaphora,
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presupposition satisfaction, and the novelty condition on indefinites) that the
then-predominant semantic framework of Montague semantics (MS, [24]) could
not account for. However, in formal terms, classic dynamic semantics compared
unfavorably with MS, which provided an explicit (albeit awkward) compositional
interface to syntax and whose semantic theory was expressed in a higher-order
language essentially equivalent to the classical simple theory of types ([3, 6, 14]).
Neither DRT nor FCS was compositional; the theoretical content of FCS was
expressed (not always as precisely as might have been hoped for) only in the
metalanguage, and DRT struck many as excessively syntactic and procedural.

Early attempts at logical formalization of dynamic semantics such as dy-
namic predicate logic (DMG, [8]) and dynamic Montague grammar (DPL, [9])
addressed the compositionality issue, but suffered from idiosyncratic, inelegant
handling of variables (failure of alphabetic variance, destructive assignments,
scope extension of existential quantifiers, etc.). Muskens [25] seems to have
been the first to demonstrate that the fundamental insights of dynamic se-
mantics could be captured in a compositional way without going beyond the
expressive limits of classical type theory. But his approach incorporated some
nonstandard—and unnecessary—features, such as an additional basic type for
states and an explicit encoding of DRT accessibility conditions. More recent
type-theoretic embodiments of dynamic semantics [1, 4, 11], including our earlier
efforts [19, 20, 22, 23] are free of these particular defects, but room for improve-
ment remains.

In this paper, we propose a new framework for compositional type-theoretic
dynamic semantics which improves on previous proposals in the following re-
spects: (1) It comes equipped with a straightforward interface to a linear-logic-
based categorial grammar (LCG) along the general lines of [10, 26, 27], etc. (2)
Although grammars and the derivations they generate make no reference to pos-
sible worlds (or extensions of meanings at them), the underlying semantic theory
is fully (hyper)intensional from the get-go, so that it can be straightforwardly
extended to handle propositional attitudes, evidentiality [17], supplements [21],
interrogatives [31], etc. (3) Since it permits, but does not require, the modeling of
(static) propositions as sets of possible worlds, one can choose between the famil-
iarity of (intensional) MS and a weaker, hyperintensional, static underpinning
[28–30] that avoids MS’s notorious foundational problems (e.g. the granular-
ity problem). (4) It straightforwardly models contexts as functions from tuples
of entities (‘discourse referents’, abbreviated ‘DRs’ ) to propositions (‘common
ground’, abbreviated ‘CG’), and updates as functions from contexts to contexts,
as in FCS, obviating the need for states [25] or continuations [11]. (5) Follow-
ing the original insights of both DRT and FCS, the semantics of indefinites
(‘dynamic existential quantification’) is not defined in terms of static existential
quantification, so there is no need for any notion of scope extension. (6) Updates
are explicitly bifurcated into the ‘carryover’ from the input context and the new
content proffered by the current utterance, thereby providing a hook for an en-
visioned extension covering utterance acceptance and rejection. (7) There is no
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requirement that common grounds remain consistent; instead, and more realis-
tically, perceived inconsistency could be grounds for rejecting proffered content.

2 Syntactic Framework

In place of Montague’s categorial grammar, we use a linear-logic-based form of
categorial grammar (hereafter, LCG) broadly similar to de Groote’s ACG [10]
or Muskens’s λ-grammar [26]. An LCG generates tripartite signs, such as:

` pedro ; NP ; p : e

` donkey ; N ; donkey : p1

The three components of a sign are called, respectively, the phenogrammatical
component (pheno for short), the tectogrammatical component (tecto for
short), and the semantic component (semantics for short). (The semantic
types will be explained in due course.) In the tecto, there is only one connective
( (linear implication) instead of directional slashes / and \.

The pheno component of a sign need not be a string (basic type s), but can
be a (possibly higher order) function over strings that tells how a functor is to
be ordered with respect to its arguments:

` λs.s · brays ; NP ( S ; bray : p1

` λst.s · beats · t ; NP ( NP ( S ; beat : p2

` λsf .f (every · s) ; N ( (NP ( S) ( S ; every : dt

Here s, t : s and f : s → s. The higher-order pheno theory axiomatizes strings
to form a monoid with identity e : s (null string) and associative operation
· : s→ s→ s (concatenation, written infix). All other pheno constants employed,
representing word phonologies, are of type s, including e (null string).

Besides lexical entries, which serve as nonlogical axioms, there is a schema
of logical axioms

p : P ;A ; z : B ` p : P ;A ; z : B ,

instances of which correspond to traces in mainstream generative grammar
(MGG), or to Montague’s ‘syntactic variables’. That is: a trace is a hypothetical
sign, with variables for pheno and semantics. Here the type metavariables P ,
A, and B range, respectively, over pheno types (s and implicative types over
s), tecto types (basic tecto types such as N, NP and S, and linear implicative
types over them), and sense types (to be defined in due course).

For example, an NP trace looks like this:

t : s ; NP ; x : e ` t : s ; NP ; x : e

As in the implicative fragment of intuitionistic linear propositional logic, the
only tectogrammatical rules are modus ponens:

Γ ` f : A→ D ;B ( E ; g : C → F ∆ ` a : A ;B ; c : C

Γ,∆ ` f a : D ; E ; g c : F
,
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and hypothetical proof :

Γ, p : P ;A ; z : B ` a : C ;D ; b : E

Γ ` λp.a : P → C ;A( D ; λz.b : B → E
,

which are, roughly, LCG’s counterparts of MGG’s Merge and (the trace-binding
aspect of) Move. These correspond, respectively, to application and abstraction
in the pheno and semantic components.

Finally, the LCG counterparts of Montague’s analysis trees are (pheno- and
semantics-labeled) sequent-style linear-logic proof trees whose leaves are axioms
(i.e. either lexical entries or traces). The following three proofs use only modus
ponens:

` λs.s · brayed ; NP ( S ; bray ` chiqita ; NP ; c

` chiqita · brayed ; S ; bray c

` λst.s · beats · t ; NP ( NP ( S ; beat ` pedro ; NP ; p

` λt.pedro · beats · t ; NP ( S ; beat p ` chiqita ; NP ; c

` pedro · beats · chiquita ; S ; beat p c

` λsf .f (every · s) ; Det ; every ` donkey ; N ; donkey

` λf .f every · donkey ; QP ; every donkey ` λs.s · brays ; NP ( S ; bray

` every · donkey · brays ; S ; every donkey bray

In the last of these, QP abbreviates (NP ( S) ( S, and Det abbreviates N (
QP. And the following proof uses a trace and an instance of hypothetical proof
to ‘lower’ every donkey into the object position. Here we abbreviate subtrees by
numerical labels:

(1)
` λsf .f (every · s) ; Det ; every ` donkey ; N ; donkey

` λf .f every · donkey ; QP ; every donkey

(2)
` λst.s · beats · t ; NP ( NP ( S ; beat ` pedro ; NP ; p

` λt.pedro · beats · t ; NP ( S ; beat p s ; NP ; x ` s ; NP ; x

s ; NP ; x ` pedro · beats · s ; S ; beat p x

` λs.pedro · beats · s ; NP ( S ; λx.beat p x

(1) (2)

` pedro · beats · every · donkey ; S ; every donkey (λx.beat p x)

This technology, due to Oehrle [27], plays the same role in LCG that quantifier
lowering does in Montague grammar.
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3 The Underlying Logic and Notational Conventions

Our semantic theory is couched in a classical higher order logic (HOL) with en-
tities (e), propositions (p, cf. [32]), and natural numbers (n) as basic types, in
addition to truth values (t) courtesy of the logic itself. Unlike MS, where propo-
sitions are sets of worlds and so the boolean structure on them is parasitic on
that of the truth values, we axiomatize (in the following section) that proposi-
tions (in the sense of static declarative sentence meanings) form a preboolean
algebra relative to (propositional) entailment. Besides the usual cartesian type
constructors→ (exponential), × (product), and T (unit type), we also make use
of dependent products (Πn:n.A) and sums (Σn:n.A) that depend on a natural
number.

We adopt the following notational conventions. For any type A, the n-fold
cartesian product is written An; hence A0 = T, A1 = A, and An+1 = An × A
(n > 0). Implication associates to the right, so A → B → C abbreviates A →
(B → C), and similarly for the linear implication ( used in the tectogrammar.
Outermost parentheses of terms are often deleted. Application associates to the
left, so f b a abbreviates (f b) a. For terms whose type is a cartesian power An

(n > 0), we often write the vector notation x in place of (x0, . . . , xn−1). The first
occurrence of a ‘vector’ variable x is often mnemonically superscripted with its
number of components, thus xn. Abstraction on product types is written either
λx.a or λx0,...,xn−1 .a, while abstraction on multiple variables without commas
abbreviates successive abstraction, e.g. λxy.a abbreviates λx.λy.a. If x : A, N :
B, and M : (A→ B)→ C, we abbreviate M λx.N to Mx.N .

4 The Underlying Static Semantic Theory

4.1 Static semantic types

The underlying static semantic theory is agnostic hyperintensional seman-
tics (AHS, [28, 30]), a possible worlds semantics with fine-grained meanings.
‘Agnostic’ here means that the theory is indifferent as to whether propositions
are sets of worlds (as in MS) or worlds are (in one-to-one correspondence with)
maximal consistent sets of propositions (as in the ‘first-wave’ possible-worlds
theories of Wittgenstein and C.I. Lewis), though the latter is by far our personal
preference. (In fact, AHS is logically weaker than Montague semantics (MS):
adding one axiom turns it into MS.)

We assume the basic types e (entities), p ((static) propositions), and w
(worlds). (The type w is never mentioned in the grammar or in analyses of
expressions; it only comes up when using the semantic theory to reason about
extensions.) It’s also convenient to define (for n ≥ 0) the types of n-ary static
properties by:

p0 =def p

pn+1 =def e→ pn
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For example, the types for static generalized quantifiers (over entities) and static
generalized determiners (over entities) are, respectively, of types:

q =def p1 → p

dt =def p1 → p1 → p

4.2 Static semantic constants

Side-by-side with the usual truth-value connectives and quantifiers of the un-
derlying HOL (true, false, ∧, ∨, →, ¬, ∃, and ∀), there are the propositional
connectives truth, falsity, and, or, implies, and not, and the propositional quanti-
fiers existsA, and forallA. The latter are polymorphic over sense types (see follow-
ing subsection) A. Some determiner meanings can be defined in terms of these
(omitting the type subscripts):

every =def λPQ.forallx.(P x) implies (Q x)

a =def λPQ.existsx.(P x) and (Q x)

These connectives and quantifiers are subject to meaning postulates that relate
them to their truth-value counterparts in the expected way (see [28] or [30] for
details). As a consequence, AHS is finer-grained than MS: senses which agree in
extension at every world need not be identical. For example, not all inconsistent
CGs are interchangeable, even though they all entail every proposition. What
matters from the dynamic perspective is whether a discourse participants (DPs)
can detect that a CG would be rendered inconsistent by conjoining to it the
proffered content of the current utterance (which would constitute grounds for
declining to admit it to the CG).

4.3 Static meanings and their extensions

Types to which static meanings can belong are called sense types. These are
T, e, p, and function types formed from these. Each sense type A has a corre-
sponding extension type Ext(A) defined as follows:

Ext(T) = T

Ext(e) = e

Ext(p) = t (following Frege [5])

Ext(A→ B) = A→ Ext(B)

For each sense type A, A→ p is called the type of A-properties, and A→ t is
called the type of A-sets. If w is a world and a : A a sense, then the extension
of a at w is written a@ w. (So @ is really a family of constants @A : A→ w→
Ext(A), written infix.) Following, roughly, Kripke [18], we assume every entity
is its own extension at every world:

` ∀x:e.∀w:w.x@ w = x
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For any proposition p, p@ w is called, following [5], the truth value of p at w.
The extensions of senses with a functional type A→ B are given by

` ∀f :A→B .∀w:w.f @ w = λx.(f x) @ w .

In particular,

` ∀P :p1
.∀w:w.P @ w = λx.(P x) @ w .

For example, if w is a world, then the extension at w of the donkey property is
the set of all entities a such that the proposition that a is a donkey is true at w.

5 Hyperintensional Dynamic Semantics

5.1 Contexts

To model contexts, we begin with our counterparts to FCS’s assignments, namely
tuples of entities. The linear positions in these tuples play the ‘addressing’ role
played by DRs (in DRT) or file cards (in FCS). What about contexts? On the
Stalnaker/Lewis conception, this is supposed to be the set of propositions in the
CG, or else a single proposition which is the conjunction of those. We modify
that view to treat the CG not as a proposition (type p), but rather as a function
from tuples of entities to propositions (type en → p), where n is the number
of ‘live’ DRs.3. The philosophy behind this typing is that the DPs don’t really
have a proposition in common, since in general the identity of the DRs that the
discourse is about (typically, introduced into the discourse by uses of indefinite
NPs) are not known. Rather, what they have in common is only a function
from n-tuples of entities to propositions, which would give rise to a proposition
in the obvious way if only the identities of the entities were known. To put it
another way: the DRs are ‘identified’ only in terms of what the CG says about
them. To give a highly simplified example, suppose (counterfactually!) that there
are actual ‘out-of-the-blue’ utterances where the input CG is empty.4 Then the
output context from an out-of-the-blue utterance of a farmer beat a donkey will
be

λx,y.(farmer x) and (donkey y) and (beat x y) ,

or, using the equivalent vector notation,

λx2 .(farmer x0) and (donkey x1) and (beat x0 x1) .

Note that this is just an uncurried binary static property. In particular there is no
existential quantification. This reflects the fundamental insight of many versions

3 However, we continue to use the type p for CGs where n = 0, in preference to the
mathematically more elegant but notationally awkward T → p.

4 Technically, this is modeled by truth, the designated top element in the preboolean
algebra of static propositions.
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of dynamic semantics that indefinites (and also definites) are not quantificational
in nature. (However, as we will see, they have the same dynamic semantic type
as ‘truly quantificational’ NPs.) Intuitively, the context corresponds not to an
existential proposition, but to mutual acceptance that whichever farmer it is
that we’re talking about beats whichever donkey it is that we’re talking about.
(We could turn this uncurried property into a proposition by applying the static
existential quantifier existse×e to it, and then define the context to be ‘true’ in
any world where that proposition is true.)

Based on these considerations, we now define the type of n-ary contexts cn
to be simply p if n = 0 and en → p if n > 0; and the type c of contexts is
defined to be the dependent sum of all these:

c =def Σn:n.cn

Also, we define the arity of an n-ary context c, written |c|, to be n. (So, since
technically, since a member of an n-indexed sum is an ordered pair of a natural
number n and a member of the n-th cofactor, the arity of a context is just its first
component.) Intuitively, |c| is the number of DRs that c is about. For example,
|c| = 2 if c is the context λx,y.(farmer x) and (donkey y) and (beat x y) discussed
above. As we’ll see, the DRs are potential targets of subsequent anaphora.

In particular, a nullary context (same as a static proposition) is, intuitively,
a context where the DPs have nothing in common to talk about. A special case
of a nullary context is the null context

t =def truth ,

also known as out of the blue, where truth : p is some obvious necessary truth.
This models the content where the DPs have no DRs to talk about given in ad-
vance, and not even anything they have agreed to take for granted. Realistically,
discourse is never completely out of the blue; even the driver and the hitchhiker
can agree that the driver picked the hitchhiker up, and have some DRs to talk
about (the weather, them Bucks, the car, the boring scenery, etc.).

When we consider anaphora, it will be important to have a handle on how
many DRs the context knows about, because we will analyze anaphoric expres-
sions (e.g. definite pronouns) as essentially n-ways ambiguous, where n is the
arity of the utterance context. For any natural number n, an anaphoric refer-
ence to the n-th DR will only interpretable in a context whose arity is greater
than n. The type of such entities, called c>n, is defined as the dependent sum

c>n =def c≥n+1 ,

where

c≥m =def Σn:n.cm+n .

5.2 Toward Dynamic Senses

To dynamicize LCG, we have to replace the static senses with dynamic ones.
For example, as we’ll see, the dynamic counterpart of type e is the type n of
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natural numbers (thought of as DRs). And the dynamic counterpart of type p
will be the type u of updates, which correspond roughly to FCS’s context change
potentials (CCPs). To a first approximation, updates are functions from contexts
to contexts (type c → c), but there is a catch: if an update makes anaphoric
reference to something in the context, then it is only defined on contexts that
contain a suitable antecedent to which the anaphoric reference can be resolved.
We’ll use dependent typing to give u a more subtle definition than c → c that
solves this problem (and which does not require partial functions, which our type
theory does not countenance).

Again, to a first approximation, dynamic counterparts of other sense types are
obtained in the expected way from these basic dynamic types. For example, the
dynamic counterpart of e→ p (properties of entities) is (to a first approximation)
the type n → u of dynamic properties; and the dynamic counterpart of (e →
p) → p (GQs) is (to a first approximation) the type (n → u) → u of dynamic
generalized quantifiers (DGQs).

5.3 Contents vs. Updates

In discourse, when an utterance is accepted, the update carries over the common
ground of the input context, while conjoining to it new content contributed by
the utterance. To capture this fundamental intuition, we distinguish between two
different things of the same type: updates, which correspond to FCS’s CCPs, and
contents, the meaning contribution of the new utterance (here, we consider only
assertions). For any content k which is accepted by the DPs, the induced update
is obtained by applying to it a certain function called cc (mnemonic for ‘context
change’). As we’ll see, cc applies first to a content k and then to an input context
c to produce the new context cc k c for the next utterance. Thus the update
cc k is itself a function which converts an input context into a new context into
which the newly accepted content k has been incorporated.

So, naively, it looks as though the type u for both contents and updates
should be c → c, and the type for cc should be (c → c) → (c → c). But there
is a subtlety: different contents (and the updates they induce upon acceptance)
have different degrees: the number of new DRs that are introduced. As we’ll see,

|cc k| = |cc k c| = |c|+ |k| ,

so the arity of the output context is the arity of the input context plus the degree
of the utterance content. (Like the arity of a context, the degree of a content k
is written |k|.)

Now, for any natural number n, the type of n-degree updates is that of
a function that maps a context c to a new context whose degree is |c| + n.
Accordingly, we define the type of n-degree updates to be the dependent
product

un =def Πc:c.c|c|+n .
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Then the type u of updates is the dependent sum of the un as n ranges over
all natural numbers:

u =def Σn:n.un = Σn:n.Πc:c.c|c|+n

The types of contents are defined similarly, as kn =def un and k =def u. With
these type definitions in place, we can now define the context change function
as follows:

cc =def λk:k.λc:c.λx|c|,y|k| .(c x) and (k c x,y)

That is: cc takes as arguments a content k with degree n = |k| and a context c
with arity m = |c| and returns a new context λxm,yn .(c x) and (k c x,y). This
new context is a function that maps any m+ n entities to a (static) proposition
which is itself the conjunction of two propositions: (1) (c x), the ‘carryover’,
which is what the input context had already established about the first m DRs;
and (2) (k c x,y), the new contribution, which is what the current utterance’s
content says about all the DRs (the m original ones plus the n new ones that
it introduces) in that context. For example, the content of it’s raining is the
0-degree content

rain =def λc:c.λx|c| .rain .

So the associated update is

` cc rain = λc:c.λx|c| .(c x) and (rain c x) = λc:c.λx|c| .(c x) and rain .

5.4 From linear categorial grammar to dynamic categorial grammar

Almost all the work involved in dynamicizing an LCG consists of replacing word
meanings with their dynamic counterparts, since the logical rules and axioms
(traces) of LCG carry over to DyCG unchanged. We will turn to that task
presently. However, we also need one new, nonlogical, grammar rule, continue,
whose purpose is to continue a discourse (tecto type D) by the addition of the
next accepted utterance:

` s ; D ; u ` t ; S ; k

` s · t ; D ; λc:c.cc k (u c)

Note that the sequent contexts are empty: binding of traces, and therefore ‘wh-
movement’ and ‘quantifying in’ are impossible across root clause boundaries.

And finally, we need an axiom for the null discourse, to ground the recursive
construction of discourses:

` e ; D ; λc:c.c

Note that using the null discourse as the first premise in the continue rule yields
the derived rule

` s ; S ; k

` s ; D ; cc k
,

which says that any sentence can be ‘promoted’ to a single-sentence discourse.
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5.5 The dynamic connectives

The content negation not A fundamental insight of dynamic semantics is that
an indefinite inside the scope of negation cannot antecede definite anaphora in
the subsequent discourse, but a definite in the scope of negation can be anteceded
by an indefinite in prior discourse:

(3) a. Pedro has a donkeyi. Iti

{
is
isn’t

}
friendly.

b. Pedro doesn’t have a donkeyi. # Iti

{
is
isn’t

}
friendly.

Such facts are accounted for by the following definition for the content nega-
tion not : k→ k0:

not =def λk:k.λc:c.λx|c| .not existsy|k| .k c x,y

This has the effect that DRs introduced within the scope of content negation
are existentially bound within the scope of (static) propositional negation, and
therefore inaccessible as antecedents for subsequent definite anaphora.

The effect of double content negation on any content k is to existentially bind
any new DRs that it introduces:

` not (not k) ≡ λc:c.λx|c| .existsy|k| .k c x,y

From this it follows that a content of degree 0 (i.e. one which introduces no new
DRs) is equivalent to its own double negation. In particular, since the content
negation of any content is itself of degree 0, content negation is equivalent to
triple content negation.

The content conjunction and Another fundamental insight of dynamic semantics
is that sentential conjunction is not commutative:

(4) a. A farmer walked in and he sat down. (Who is he? )

b. He sat down and a farmer walked in. (Who is he? )

We capture this insight with the following definition of content conjunction,
of type Πh:k.Πk:k.Πc:c.c|c|+|h|+|k|:

and =def λh:k.λk:k.λc:c.λx|c|,y|h|,z|k| .(h c x,y) and (k (cc h c) x,y, z)

Crucially, the input context (cc h c) for the second conjunct is created by ap-
plying the update induced by the first conjunct to its input context c. It is not
hard to show that the update induced by conjoined declarative utterances is the
same as the function composition of the updates induced by the conjuncts:

` ∀hk.(cc (h and k)) = λc:c.cc k (cc h c)
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The content disjunction or As in other versions of dynamic semantics, we define
content disjunction by DeMorgan duality:

or =def λh:k.λk:k.not ((not h) and (not k))

This predicts that indefinites within either disjunct can’t antecede subsequent
definite anaphora:

(5) a. Either a donkey brayed or someone is making barnyard noises. # It’s
friendly.

b. Either someone is making barnyard noises, or a donkey brayed. # It’s
friendly.

c. # Either a donkey brayed, or it’s friendly.

The content implication implies Our definition of content implication is mod-
eled on a valid but nonstandard equivalence for static propositional implication:

implies =def λpq.(not p) or (p and q)

implies =def λhk.(not h) or (h and k)

This predicts that indefinites in either the antecedent or the consequent of the
conditional cannot antecede definite anaphora in a subsequent sentence, but an
indefinite in the antecedent can antecede definite anaphora in the consequent:

(6) a. If a donkey brayed, it’s hungry. # We better feed it.

b. If Pedro is a farmer, he has a donkey. # He better feed it.

An additional virtue of this definition of content implication is that it gives rise
to so-called weak readings of conditional sentences:

(7) a. If you have a donkey, I’ll buy it.

b. If you have a donkey, I’ll buy a donkey you have. (weak)

c. If you have a donkey, I’ll buy every donkey you have. (strong).

There are known pragmatic strengthening strategies for inferring strong under-
standings from weak meanings, but if a strong semantics is used (say, based on a
different static equivalence ` (p implies q) ≡ (not (p and (not q))), then it is hard
to explain where weak readings come from.

5.6 Dynamic generalized quantifiers (DGQs)

Three kinds of noun phrase We turn next to the dynamic meanings of indefi-
nite referring expressions (e.g. a donkey), definite referring expressions (e.g. it,
the donkey), and ‘truly quantificational’ NPs (e.g. every donkey, no donkey).
Although these will all be of the same type q (DGQs), they differ radically in
their discourse behavior. A use of an indefinite in an utterance introduces a new
DR into its output context, while a definite ‘picks up’ or ‘continues’ an already
existing DR:
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(8) A donkeyi brayed. Iti was hungry.

But a use of a truly quantificational NP renders any DRs introduced within
either its restriction or its scope inaccessible to the subsequent discourse:

(9) a.

{
Every
No

}
farmer that owned a donkeyi was unhappy. # Iti was lazy.

b.

{
Every
No

}
farmer owned a donkeyi. # Iti was lazy.

However, an indefinite introduced in the restriction of a truly quantificational
NP is accessible from its scope:

(10)

{
Every
No

}
farmer that owns a donkeyi beats iti.

Dynamic properties In static semantics, a GQ is a property of properties of
entities (type p1 → p). Since, in dynamic semantics, n and u are the respective
counterparts of static sense types e and p, it seems reasonable to assume that
the type for the dynamic counterparts of properties of, and GQs over, entities
would be, respectively, n → k and (n → k) → k. However, some delicacy is
called for, because we have to ensure that in applying a dynamic property to
a DR, the resulting content is one which is defined on contexts which ‘know
about’ the DR in question. Additionally, we have to take into consideration that
a given dynamic property (e.g. farmer that owns a donkey) may itself introduce
new DRs. Accordingly, we define (for each i) the type d1,i of unary dynamic
properties of degree i as

d1,i =def Πn:n.Πc:c>n
.c|c|+i ,

and the type of unary dynamic properties as the dependent sum

d1 =def Σi:n.Πn:n.Πc:c>n
.c|c|+i .

In due course, we will define dynamic counterparts dn for all the static types pn.

Dynamic counterparts of static properties In dynamic semantics, the static-
property senses of common nouns, predicative adjectives, and intransitive verbs
have to be replaced by their dynamic counterparts, which are unary dynamic
properties (of degree 0, since they introduce no DRs). This change is effected by
the unary dynamicization function dyn1 : p1 → d1,0 defined as follows:

dyn1 =def λP :p1 .λn:n.λc:c>n .λx|c| .P xn

For example, the dynamic meaning of the common noun donkey is:

donkey =def (dyn1 donkey) = λn:n.λc:c>n
.λx|c| .donkey xn
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This maps a DR n and a context c which knows about n to a content which
asserts that (whichever entity corresponds to) n is a donkey. More generally,
for each n : n, there is a type dn of n-ary dynamic relations, the dynamic
counterparts of the static types pn. As in the unary case, each of these is a
dependent sum

dn = Σi:n.dn,i ,

where i ranges over the degree (number of newly introduced DRs) of the relation.
For example, for n = 2:

d2,i =def Πm:n.Πn:n.Πc:c>(max m n)
.c|c|+i

A special case of this is:

d2,0 =def Πm:n.Πn:n.Πc:c>(max m n)
.c|c|

Also as in the unary case, for each n : n, there is a function dynn : pn → dn that
maps each static relation to its dynamic counterpart. For n < 3, these are:

dyn0 =def λp:p.λc:c.λx|c| .p

dyn1 =def λP :p1
.λn:n.λc:c>n

.λx|c| .P xn

dyn2 =def λR:p2
.λm:n.λn:n.λc:c>(max m n)

.λx|c| .R xm xn

For example:

rain = λc:c.λx|c| .rain

donkey = λn:n.λc:c>n
.λx|c| .donkey xn

own = λm:n.λn:n.λc:c>(max m n)
.λx|c| .own xm xn

Indefinites To give a dynamic meaning for indefinites, we start with the context
extension function (·)+ of type Πc:c.c|c|+1, defined as follows:

(·)+ =def λc:c.λx|c|,y.c x

This just adds a new DR to any context. In terms of this, we now define
the dynamic ‘existential’ quantifier exists to be the following function of type
Πn:n.ΠD:d1,n .kn+1 (i.e. it maps a dynamic property to a content of degree one
greater than that of the dynamic property):

exists =def λD:d1
.λc:c.D |c| c+

Then the dynamic meaning of the indefinite determiner is defined by analogy
with its static counterpart:

a =def λPQ.existsx.(P x) and (Q x)

a =def λDE .existsn.(D n) and (E n)
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For example, the (degree 1) content of a donkey brays is

` a donkey bray = λc:c.λx|c|,y.(donkey y) and (bray y) .

The fact that the variable y corresponding to the DR for the donkey is only
λ-bound (not exists-bound) has as a consequence that this DR will be accessible
to subsequent definite anaphora.

Definite anaphora To keep within space bounds, we provide here a simplified,
Montague-like, treatment of anaphora in terms of lexical ambiguity as to which
DR is the antecedent; [20] and [21] describe a mechanism (improving on the sel

function of [11]) for selecting the (presupposed) DR that satisfies the definite
expression’s descriptive content. For example, the dynamic meaning of the n-th
definite pronoun it is

itn =def λD:d1 .λc:c>n .D n c

= λD:d1 .λc:c>n .λx|c| .D n c x .

Unlike an indefinite, which introduces a new DR, the definite simply resumes an
old one.

A ‘truly quantificational’ DGQ Again by analogy with the static case, we define
the dynamic universal quantifier forall as follows:

forall =def λP .not (existsx.(not (P x)))

forall =def λD.not (existsn.(not (D n)))

Then, again analogizing to the static case, we define the dynamic universal de-
terminer every:

every =def λPQ.forallx.(P x) implies (Q x)

every =def λDE .foralln.(D n) implies (E n)

This in turn can be shown to be equivalent to

λDE .not (existsn.((not (not(D n))) and (not ((D n) and (E n)))))

For example, a simple universal sentence like Every donkey brays ends up with
the content every donkey bray, which can be shown to be equivalent to

λc:c.λx|c| .not existsy.(donkey y) and (not (bray y)) .

As desired, the fact that the variable y corresponding to the DR for the donkey
is exists-bound (within the scope of negation) has as a consequence that this DR
is inaccessible to subsequent definite anaphora.



16 Scott Martin and Carl Pollard

Donkey anaphora We conclude with a DyCG derivation for the classic universal
donkey sentence Every farmer that owns a donkey beats it. Because we based our
semantics for every on the ‘weak’ dynamic implication implies, our analysis
produces the weak reading (that every farmer that owns a donkey beats a donkey
that s/he owns), which again is a desirable state of affairs (cf. [2, 16]). The lexical
entries employed are:

` λsf .f (every · s) ; N ( (NP ( S) ( S ; every

` farmer ; N ; farmer

` λsf .s · that · (f e) ; N ( (NP ( S) ( N ; that

` λst.s · owns · t ; NP ( NP ( S ; own

` λsf .f (a · s) ; N ( (NP ( S) ( S ; a

` donkey ; N ; donkey

` λst.s · beats · t ; NP ( NP ( S ; beat

` λf .f it ; (NP ( S) ( S ; itn

And the endsequent of the derivation is

` every · farmer · that · owns · a · donkey · beats · it ; S ;

every (farmer that λm.(a donkey)n.(own m n)) λm.it
i.(beat m) .

In a given context, this will produce the (weak) donkey-anaphora reading pro-
vided i is selected to be whichever natural number corresponds to the DR intro-
duced by a donkey. As mentioned above, [20] gives a more realistic treatment
for the definite pronoun it as selecting the most salient, informationally unique
discourse referent with the property of being nonhuman.

6 Conclusion

This dynamic semantics is not only fully compositional and expressed in pure
(dependent) type theory, it also captures all of the central insights of the dynamic
tradition, with indefinites introducing discourse referents, definites selecting their
antecedents from the input context, and ‘accessibility constraints’ captured by
existentially binding variables in the scope of negation and operators defined
in terms of it. No idiosyncratic machinery is required, and we overcome the
problem in which discourse contexts must have a certain arity by a mild use of
dependent types, rather than extending the type theory with partial functions.
As we have shown, this theory can be seen as a straightforward extension of the
underlying static semantics, achieved by adding a type of discourse contexts and
replacing entities with natural number indices into the list of discourse referents
the incoming context ‘knows about.’ Since the underlying static semantics is
hyperintensional, we avoid certain foundational problems with possible worlds
approaches while allowing the grammar to focus on the dynamic senses of ex-
pressions, rather than bothering with worlds and extensions at them.
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